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ABSTRACT: Tolerance to food antigens induced via the gut (“oral toler-
ance”) appears to be a rather robust adaptive immune mechanism. How-
ever, the neonatal period is particularly critical in terms of mucosal
defense, with regard to infections and priming for allergic disease. This is
so because the intestinal barrier function provided by secretory antibodies,
as well as the immunoregulatory network, is poorly developed for a vari-
able period after birth. Notably, the postnatal development of mucosal im-
mune homeostasis depends on the establishment of a normal commensal
microbial flora and also on adequate timing and dose of dietary antigens
when first introduced. In this context, breastfeeding apears to exert both
shielding and positive regulatory effects. Altogether, the intestinal immune
system normally seems rather fit for tolerance induction against innocuous
antigens because most children with food allergy “outgrow” their prob-
lems, whereas airway allergy tends to persist.
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INTRODUCTION

The mucosae are bombarded immediately after birth by a large variety of
microorganisms as well as by protein antigens from the environment, the lat-
ter particularly in formula-fed infants; and the mucosal surface to be protect-
ed is enormous, probably almost 200 times that of the skin. During evolution
over millions of years, the mucosal immune system has generated two arms
of adaptive defense to handle these challenges: (i) antigen exclusion per-
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formed by secretory IgA (SIgA) and secretory IgM (SIgM) antibodies to
modulate or inhibit colonization of microorganisms and dampen penetration
of potentially dangerous soluble luminal agents and (ii) suppressive mecha-
nisms to avoid local and peripheral overreaction (hypersensitivity) against in-
nocuous substances bombarding the mucosal surfaces (FIG. 1). The latter arm
is referred to as “oral tolerance” when induced via the gut against dietary
antigens1; it probably explains why overt and persistent immunological hy-
persensitivity, or allergy, to food proteins is relatively rare.2 Similar down-
regulatory mechanisms apparently operate against antigens from the
commensal microbial flora.3

Oral tolerance generally seems to be a rather robust adaptive immune func-
tion in view of the fact that more than a ton of food may pass through the gut

FIGURE 1. Schematic depiction of two major adaptive immune mechanisms operat-
ing at mucosal surfaces: (1) Immune exclusion limits epithelial colonization of pathogens
and inhibits penetration of harmful foreign material. This first line of defense is principal-
ly mediated by secretory antibodies of the IgA (and IgM) class in cooperation with various
nonspecific innate protective factors (not shown). Secretory immunity is preferentially
stimulated by pathogens and other particulate antigens taken up through thin M cells (M)
located in the dome epithelium covering inductive mucosa-associated lymphoid tissue
(see FIG. 2). (2) Penetrating innocuous soluble environmental and dietary antigens (mag-
nitude of uptake indicated) as well as the autologous indigenous microbial flora are less
stimulatory for secretory immunity (self-limiting responses, broken arrows), but induce
suppression of proinflammatory humoral immune responses (IgG and Th2 cytokine-
dependent IgE antibodies) as well as Th1 cytokine-dependent delayed-type hypersensitiv-
ity (DTH). The homeostatic Th2/Th1 balance is regulated by a complex and poorly
defined phenomenon called mucosal or “oral” tolerance (see FIG. 5), which exerts down-
regulatory effects both locally and in the periphery. Modified from Brandtzaeg et al.5
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of an adult every year, resulting in substantial uptake of intact antigens (some
10−5 of the intake) even in the healthy state. Nevertheless, the neonatal period
is particularly critical in terms of mucosal defense, both with regard to infec-
tions and priming for allergic disease.4 This is so because the mucosal barrier
function and the immunoregulatory network are poorly developed for a vari-
able period after birth.5,6 Notably, the postnatal development of mucosal im-
mune homeostasis appears to depend on the establishment of a normal
commensal microbial flora as well as on adequate timing and dose of dietary
antigens when first introduced.3,7,8

Interestingly, the postnatal colonization of commensal bacteria is impor-
tant both to establish9 and regulate10 an appropriate epithelial barrier. Also,
as discussed in this review, an optimal mucosal barrier function in the neona-
tal period unquestionably depends on an adequate supply of breast milk, par-
ticularly in relation to mucosal infections in the developing countries.11 In the
Westernized part of the world, the value of breastfeeding is clinically most
apparent in preterm infants,12 but accumulating evidence (referred to below)
also suggests a significant role in the protection against hypersensitivity re-
actions to food.

MUCOSA-ASSOCIATED LYMPHOID TISSUE

Induction and Homing of Immune Cells

Lymphoid cells are located in three distinct compartments in the gut: orga-
nized gut-associated lymphoid tissue (GALT), the lamina propria, and the
surface epithelium. GALT comprises the Peyer’s patches, the appendix, and
numerous solitary lymphoid follicles,5 especially in the large bowel.13 All
these lymphoid structures are believed to represent inductive sites for intesti-
nal immune responses. The lamina propria and epithelial compartment con-
stitute effector sites but are nevertheless important in terms of cellular
expansion and differentiation within the mucosal immune system. GALT and
other mucosa-associated lymphoid tissue (MALT) structures (see below) are
covered by a characteristic follicle-associated epithelium (FAE), which con-
tains membrane (M) cells (FIGS. 1 and 2). These specialized thin epithelial
cells are particularly effective in the uptake of live and dead antigens from the
gut lumen, especially when particulate in nature.14 Many enteropathogenic
infectious bacterial and viral agents use the M cells as portals of entry.

The GALT structures resemble lymph nodes with B-cell follicles, interven-
ing T-cell areas, and a variety of antigen-presenting cell (APC) subsets, but
there are no afferent lymphatics supplying antigens for immunological stimu-
lation. Therefore, the exogenous stimuli must come directly from the gut lu-
men, probably in the main via the M cells. Among the T cells, the CD4+ helper
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subset predominates, the ratio between CD4 and CD8 cells being similar to
that of other peripheral T-cell populations.5 In addition, B cells aggregate to-
gether with T cells in the M-cell pockets, which thus represent the first contact
site between immune cells and luminal antigens.15,16 The B cells may perform
important antigen-presenting functions in this compartment, perhaps promot-

FIGURE 2. Schematic depiction of the human mucosal immune system. Inductive
sites are constituted by regional mucosa-associated lymphoid tissue (MALT) with their B-
cell follicles and M cell (M)-containing follicle-associated epithelium through which exog-
enous antigens are actively transported to reach professional antigen-presenting cells
(APC), including B cells (B) and follicular dendritic cells (FDC). In addition, mucosal den-
dritic cells (DC) may capture antigens and migrate via draining lymph to regional lymph
nodes where they become active APCs, which stimulate T cells (T) for positive or negative
(down-regulatory) immune responses. Naive B and T cells enter MALT (and lymph nodes)
via high endothelial venules (HEV). After being primed to become memory/effector B and
T cells, they migrate from MALT and regional lymph nodes via lymph and peripheral blood
for subsequent extravasation at mucosal effector sites. This process is directed by the profile
of adhesion molecules and chemokines expressed on the microvasculature, the endothelial
cells thus exerting a “gatekeeper” function for mucosal immunity. The intestinal lamina
propria is illustrated with its various immune cells, including B lymphocytes, J chain-
expressing IgA and IgM plasma cells, IgG plasma cells with a variable J-chain level (J), and
CD4+ T cells. Additional features are the generation of secretory IgA (SIgA) and secretory
IgM (SIgM) via pIgR (SC)-mediated epithelial transport, as well as paracellular leakage of
smaller amounts (broken arrow) of serum-derived and locally produced IgG antibodies into
the lumen. Note that IgG cannot interact with J chain to form a binding site for pIgR. The
distribution of intraepithelial lymphocytes (mainly T-cell receptor α/β+CD8+ and some γ/
δ+ T cells) is schematically depicted. Insert (lower left corner) shows details of a M cell and
its “pocket” containing various cell types.
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ing antibody diversification and immunological memory or contributing to
tolerance induction.17 Other types of professional APCs, macrophages and
dendritic cells (DCs), are located below the FAE and between the follicles.

Pioneer studies performed in animals almost 30 years ago demonstrated
that immune cells primed in GALT are functionally linked to mucosal effec-
tor sites by an integrated migration or “homing” pathway.1 T cells activated
by microbial and other antigens in GALT preferentially differentiate to CD4+

helper cells which, aided by DCs and secretion of cytokines such as trans-
forming growth factor (TGF)-β and interleukin (IL)-10, induce the differen-
tiation of antigen-specific B cells to predominantly IgA-committed plasma
blasts.5,17 The germinal-center cells express small amounts of surface IgA
along with less IgM or IgG.18 Such isotype skewing reflects differentiation
to precursors for IgA-producing cells. The drive for isotype switching to-
wards IgA, together with J-chain expression in B cells, is for unclear reasons
much more evident in Peyer’s patches than in other MALT structures.5,17 The
combination of IgA- and J-chain production is a prerequisite for generation
of SIgA antibodies (FIG. 3).

FIGURE 3. Model for epithelial transport of J chain-containing dimeric IgA (IgA+J)
and pentameric IgM (IgM+J) by the polymeric Ig receptor (pIgR) expressed basolaterally on
secretory epithelial cells. The resulting secretory immunoglobulins (SIgA and SIgM) act in a
first line of defense by performing immune exclusion of antigens in the mucus layer at the ep-
ithelial surface (to the right). Note that although J chain (J) is often produced by mucosal IgG
plasma cells, it remains free in the cytoplasm and becomes degraded. Serum-derived or local-
ly produced IgG is not subjected to active external transport (see FIG. 2). Free secretory com-
ponent (SC) is generated when unoccupied pIgR (at the top of gland) is cleaved at the apical
face of the epithelial cell, in the same manner as bound SC in SIgA and SIgM.
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The GALT-derived B-cell blasts proliferate and differentiate further on
their route through mesenteric lymph nodes and the thoracic duct into the
bloodstream (FIG. 2). Thereafter, they home preferentially to the gut mucosa
where they complete their terminal differentiation to IgA-producing plasma
cells. As reviewed elsewhere,5,19 this migration of lymphoid cells is facilitat-
ed by “homing receptors” interacting with ligands on the microvascular en-
dothelium at the effector site (“addressins”), with an additional fine-tuned
level of navigation conducted by local chemoattractant cytokines (chemok-
ines). Under normal conditions, therefore, the local microvasculature exerts
a “gatekeeper” function to allow selective extravasation of primed lymphoid
cells belonging to the mucosal immune system (FIG. 2).

Regionalization of MALT

Although GALT constitutes the major part of MALT, induction of mucosal
immune responses can also take place in the palatine tonsils and other lym-
phoepithelial structures of Waldeyer’s pharyngeal ring, including nasal-
associated lymphoid tissue (NALT) such as the adenoids in humans17,19,20

and probably also bronchus-associated lymphoid tissue (BALT). Because
BALT is lacking in normal lungs of newborns and adults,21 Waldeyer’s ring
may represent a significant component of human MALT. Accumulating evi-
dence suggests that a certain regionalization exists in the mucosal immune
system, especially a dichotomy between the gut and the upper aerodigestive
tract with regard to homing properties and terminal differentiation of B
cells.5,17,20 This disparity may be explained by microenvironmental differ-
ences in the antigenic repertoire as well as adhesion molecules and chemok-
ines involved in preferential local leukocyte extravasation. It appears that
primed immune cells selectively home to effector sites corresponding to the
inductive sites where they initially were triggered by antigens. Such region-
alization within the “common” or integrated mucosal immune system has to
be taken into account in the development of local vaccines.

B-Cell Homing to Mammary Glands

Lactating mammary glands are part of the integrated mucosal immune sys-
tem, and milk antibodies reflect antigenic stimulation of MALT in the gut as
well as in the airways. This fact has been documented by showing that SIgA
from breast milk exhibits antibody specificities for an array of both intestinal
and respiratory common pathogens.22 The secretory antibodies are thus high-
ly targeted against infectious agents in the mother’s environment, which are
those likely to be encountered by the infant during its first weeks of life.
Therefore, breastfeeding represents an ingenious immunological integration
of mother and child (FIG. 4). Although the protection provided by this humor-
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al defense mechanism is most readily demonstrable in populations living in
poor sanitary conditions,11,23 a beneficial clinical effect is also apparent in
the industrialized world,24 even in relation to relatively common diseases
such as otitis media and acute lower respiratory tract infections.25–27

Antibodies to various dietary antigens, such as cow’s milk proteins28 and
gluten,29 are also present in breast milk. Nevertheless, little is known about
the preferential site where soluble luminal antigens exert immune priming.
Thus, dietary proteins may be taken up mainly through the extensive epithe-
lial surfaces covering the diffuse immunological effector tissue of the intesti-
nal mucosa rather than by M cells and may therefore largely be transported
to the mesenteric lymph nodes. As discussed below, their fate and possible
immune-inductive or tolerogenic effects will depend on how they are handled
locally and whether they reach lymph or portal blood.1,30,31

FIGURE 4. Integration of mucosal immunity between mother and the newborn, with
emphasis on migration (arrows) of primed B (and probably T) cells from gut-associated
lymphoid tissue (GALT) such as Peyer’s patch, via lymph and peripheral blood to lactat-
ing mammary gland. This distribution of precursors for IgA plasma cells beyond the gut
mucosa is crucial for glandular production and subsequent occurrence in breast milk of
secretory antibodies (SIgA and SIgM) specific for enteric antigens (microorganisms and
food proteins). By this mechanism, the breast-fed infant will receive relevant secretory
antibodies directed against the microflora initially colonizing its mucosae (reflecting the
mother’s microflora) and hence be better protected both in the gut and in the upper air-
ways by SIgA and SIgM (hatched areas) in the same way as the mother’s gut mucosa is
protected by similar antibodies (hatched areas).
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POSTNATAL DEVELOPMENT OF MUCOSAL IMMUNITY

Effects of Antigen Exposure and Nutrition

In most mucosal tissues, the surface epithelium is monolayered and therefore
quite vulnerable, so the defense of this large area is a formidable task. Neverthe-
less, most babies growing up under privileged conditions show remarkably
good resistance to infections if their innate nonspecific mucosal defense
mechanisms are normally developed. This can be explained by the fact that
immune protection of their mucosae is additionally provided by maternal IgG
antibodies, which are distributed in interstitial tissue fluid at a concentration
50–60% of the intravascular level. In the first postnatal period, only occasion-
al traces of SIgA and SIgM normally occur in the intestinal juice, whereas
some IgG is more often detectable; this reflects “leakage” from the highly
vascularized lamina propria, which contains maternal IgG, particularly after
34 weeks of gestation.32 On the other hand, the inductive sites of the secreto-
ry immune system, such as the Peyer’s patches, depend on exogenous stimuli
for maturation. Thus, although GALT structures generally develop in fetal
life, hyperplasia with secondary follicles containing germinal centers signi-
fying B-cell activation does not occur until shortly after birth.33–37

Antigenic constituents of food clearly exert a stimulatory effect on the in-
testinal B-cell system, as suggested by the occurrence of fewer lamina pro-
pria IgA immunocytes both in mice fed on hydrolyzed milk proteins38 and in
parenterally fed babies.39 Likewise, mice given total parenteral (intravenous)
nutrition have reduced numbers of B and T cells in the gut, as well as de-
creased SIgA levels,40–42 and they show impaired SIgA-dependent influen-
za-specific immunity.43 The effect of food in the gut lumen could be direct
immune stimulation or stimulation mediated via release of gastrointestinal
neuropeptides. The indigenous microbial flora is also extremely important
for mucosal immunity as shown by the fact that the intestinal IgA system of
germ-free or specific pathogen-free mice is normalized after about 4 weeks
of conventionalization.44,45 Bacteroides and Escherichia coli strains seem to
be particularly stimulatory for the development of intestinal IgA immuno-
cytes.46,47 The large dietary and bacterial antigen load in the gut lumen there-
fore explains that the greatest density of IgA immunocytes is seen in the
intestinal lamina propria, amounting to some 1010 cells per meter of adult
gut.5

In keeping with an important stimulatory effect of luminal antigens, de-
functioning colostomies in children showed a 50% numeric reduction of mu-
cosal IgA and IgM immunocytes after 2–11 months.48 Prolonged studies of
defunctioned ileal segments in lambs revealed even more strikingly a scarcity
of mucosal immunocytes; this was caused by decreased local proliferation
and differentiation of B-cell blasts and perhaps reduced homing from
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GALT.49 Accordingly, the postnatal establishment of the mucosal IgA system
is usually much faster in developing countries than in the industrialized part
of the world, a difference that seems to hold true even in undernurished chil-
dren.50 However, severe vitamin A deficiency has been reported to have an
adverse effect on mucosal IgA antibody responses in rodents,51 but with no
consistent downregulation of epithelial IgA transport.52

The possibility exists that suboptimal stimulatory reinforcement of the
SIgA-dependent mucosal barrier function might contribute to the increased
frequency of certain diseases in industrialized countries, particularly allergies
and other inflammatory mucosal disorders. This “hygiene hypothesis” has
been tested in several experimental and clinical studies by evaluating the ben-
eficial effect of probiotic bacterial preparations. Especially viable strains of
the commensal intestinal microflora, such as lactobacilli and bifidobacteria,
have been reported to enhance IgA responses, both in humans and experi-
mental animals, apparently in a T-cell-dependent manner.53–58 Interestingly,
early colonization of infants with a nonenteropathogenic strain of E. coli has
been reported to have a long-term beneficial effect by reducing both infec-
tions and allergies.59 Likewise, a recent double-blind study of infants with a
family history of atopic (IgE-mediated) allergy reported the prevalence of
atopic eczema to be reduced by 50% at the age of two years in those receiving
the probiotic Lactobacillus GG strain daily for 6 months compared with those
receiving placebo.60 It remains to be shown whether this striking beneficial
effect was mediated via SIgA enhancement or by promotion of oral tolerance
as discussed below.

Importance of Breastfeeding and Secretory Immunity

When much of the transferred maternal IgG has been catabolized by
around 2 months of age, the infant becomes still more dependent on antibod-
ies from breast milk for specific humoral immunity. Notably, IgA-producing
immunocytes are normally undetectable in human intestinal mucosa before 10
days of age, but thereafter a rapid increase takes place, although IgM immuno-
cytes usually remain predominant up to 1 month.7,8,32 Adult salivary IgA levels
are reached quite late in childhood, but only a small increase of IgA-producing
cells has been reported to take place in the intestinal mucosa after 1 year. 

At least 90% of all pathogens attacking humans use the mucosae as por-
tals of entry; mucosal infections are in fact a major killer of children below
the age of 5 years, being responsible for more than 14 million deaths of chil-
dren annually in the developing countries. Diarrheal disease alone claims a
toll of 5 million children per year. These sad figures document the impor-
tance of breastfeeding. Convincing epidemiological data suggest that the
risk of dying from diarrhea is reduced 14–24 times in nursed children.11,23

Indeed, exclusively breastfed infants are better protected against a variety of
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infections24–26,61 and apparently also against atopy, asthma,62–64 and celiac
disease.65 Interestingly, experiments in neonatal rabbits strongly suggest that
SIgA is a crucial antimicrobial component of breast milk.66 The role of secre-
tory antibodies for mucosal homeostasis is furthermore supported by the fact
that knockout mice lacking SIgA and SIgM show increased mucosal
leakiness.67

The survival of the infant will to an increasing extent depend on its own
adaptive immune responses. When the mucosal immune system is adequately
developed, exocrine glands and secretory mucosae contain most of the body’s
activated B cells, which are terminally differentiated to Ig-producing blasts
and plasma cells (collectively called immunocytes).5 These cells produce
mainly J chain–containing dimers and some larger polymers of IgA (collec-
tively called pIgA) which, along with pentameric IgM, can be actively trans-
ported through serous-type secretory epithelia,68–72 including lactating
mammary glands,73 to act in a first-line mucosal defense (FIG. 3). This trans-
port depends on the epithelial polymeric Ig receptor (pIgR), which consists
of a transmembrane glycoprotein also known as the secretory component
(SC). The generated SIgA and SIgM antibodies reinforce the epithelial bar-
rier function by performing immune exclusion of live and dead antigens.

Developmental Variations and Food Allergy

The postnatal mucosal B-cell development shows large individual varia-
tions, even within the same population.32 This disparity could partly reflect a
genetically determined effect on the establishment of the mucosal barrier
function. Thus, it has been proposed on the basis of serum IgA levels that a
hereditary risk of atopy is related to a retarded postnatal development of the
IgA system.74 This notion was later supported by a report showing signifi-
cantly reduced IgA immunocyte numbers (with no compensatory IgM en-
hancement) in jejunal mucosa of atopic children.75 Also, an inverse
relationship was found between the serum IgE level and the jejunal IgA cell
population in children with food-induced atopic eczema.76 It was subse-
quently reported that infants born to atopic parents showed a significantly
higher prevalence of salivary IgA deficiency than age-matched control in-
fants.77 Interestingly, Kilian et al.78 more recently found that the throats of
18-month-old infants with presumably IgE-mediated allergic problems con-
tained significantly higher proportions of IgA1 protease-producing bacteria
than age-matched, healthy controls, thus supporting a previous report show-
ing much less intact IgA in nasopharyngeal secretions from children with a
history of atopic allergy than from controls with episodes of acute otitis.79 In
this context it is important to note that it takes up to 3 months after birth be-
fore the IgA2 to IgA1 immunocyte ratio in salivary glands has increased to
the adult value, with approximately 33% IgA2-producing cells.80
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Altogether, a poorly developed or enzymatically reduced SIgA-dependent
mucosal barrier function, combined with a hereditary and/or cytokine-driven
hyper-IgE responsiveness (see below) could contribute to the pathogenesis of
allergy. This notion accords with the increased frequency not only of infec-
tions, but also of atopic allergy and celiac disease seen in subjects with per-
manent selective IgA deficiency,81 although compensatory overproduction of
SIgM apparently may counteract the adverse consequences of their absent
mucosal IgA responses, particularly in the gut.32,82

MUCOSAL INDUCTION OF IMMUNOLOGICAL TOLERANCE

Oral Tolerance Appears to Exist in Humans

The concept of oral tolerance has a long history, mainly based on feeding
experiments in rodents.1 An overwhelming mechanistic complexity has ham-
pered the understanding of this mucosally induced down-regulatory or sup-
pressive phenomenon. Identifiable experimental variables include genetics;
age, dose, and timing of postnatal feeding; antigenic structure and composi-
tion of fed protein; epithelial barrier integrity; and the degree of concurrent
local immune activation as reflected by microenvironmental cytokine profiles
and the expression of costimulatory molecules on mucosal APCs.1,83,84 Also,
rodent studies suggest that the commensal microflora is important both for
induction of oral tolerance and for reconstitution of this mechanism after its
experimental abrogation.3 This effect is probably mediated mainly through
immune stimulation of GALT as discussed above.

It seems justified to believe that that oral tolerance also operates in hu-
mans. Indirect evidence of this is provided by the fact that the vulnerable in-
testinal mucosa, which is separated only by a monolayered epithelium from
the enormous luminal load of live and dead antigenic material, in the normal
state exhibits no substantial IgG response5,30 and contains very few T cells
with markers of hyperactivation such as CD25 or the IL-2 receptor.85 More-
over, the systemic IgG response to dietary antigens tends to decrease in hu-
mans with increasing age,86,87 and a hyporesponsive state to bovine serum
albumin has been documented by intradermal testing in adults.88

Interestingly, experimental feeding in healthy adults with a protein to
which humans normally are not exposed, keyhole limpet hemocyanin (KLH),
did result in downregulation of the peripheral T-cell response, although stim-
ulation of local as well as systemic humoral immunity was observed.89 Con-
versely, intranasal application of KLH tended to suppress both cell-mediated
and humoral peripheral immunity to this antigen.90 The mechanisms remain
unclear, however, and sequestration of specific immune cells into the antigen-
exposed mucosae or regional lymph nodes is one possible pitfall that is diffi-
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cult to refute because local immunity was enhanced in both studies. Such a
mechanism has been suggested in untreated celiac disease patients whose cir-
culating T cells show decreased response to gluten compared to treated pa-
tients on a gluten-free diet.91 Nevertheless, human feeding with KLH was
recently repeated with parallel systemically immunized controls, and mucos-
ally induced T-cell tolerance was indeed confirmed in peripheral blood
(Mayer, L. et al., unpublished observations). 84 Also notably, feeding low
doses of myelin basic protein to patients with multiple sclerosis resulted in a
higher frequency of circulating T cells with a potency for production of the
down-regulatory cytokine TGF-β compared with T cells from placebo-fed
patients.92

Putative Lympho–Epithelial Interactions

A central role of the gut epithelium in oral tolerance is suggested by the
observation that its experimental induction depends on preserved integrity of
the mucosal barrier.93,94 Suppressive effects resulting from interactions be-
tween the dominating T-cell receptor (TCR)α/β+CD8+ intraepithelial lym-
phocyte (IEL) subset and a normal epithelium represent one intriguing
possibility, and there is some supporting evidence to this effect95; it is possi-
ble that luminal antigenic peptides are presented by resting enterocytes with
inadequate costimulation to IELs or subepithelial CD4+ T cells.96 Experi-
ments in CD8-knockout mice have suggested that CD8+ T cells are crucial for
the downregulation of enterically elicited mucosal immunity but not for mu-
cosally induced suppression of systemic antibody responses.97 Moreover, the
chief effect obtained when enterocytes have been used as unconventional
APCs in various test systems has been stimulation of CD8+ T cells with sup-
pressor function.84,98 Human enterocytes express a ligand (gp180) that, by
interaction with the α chain of CD8, may rapidly activate the tyrosine kinase
p561ck and thereby preferentially trigger CD8+ T cells.99 Antigen presenta-
tion by major histocompatibility complex (MHC) or CD1d molecules on en-
terocytes in this context could theoretically leave cognate IELs, and even
CD4+ lamina propria T helper (Th) cells, in an unresponsive state or induce
an active down-regulatory potential by a deviated cytokine profile (FIG. 5).
Moreover, basolateral exosomes with MHC class II–dependent antigen-
presenting capacity may be released from the gut epithelium and act as “tole-
rosomes,”100 either locally or at distant sites such as mesenteric lymph nodes
or the liver (FIG. 5).

The additional involvement of TCRγ/δ+ IELs in oral tolerance is also an in-
triguing possibility (FIG. 5) in view of the suggestion that this subset in the
mouse may act as “contrasuppressor cells,” thereby being able to release in-
testinal IgA responses from T-cell-mediated suppression.101 Subsequent
studies have shown that this effect probably can be ascribed to IL-10 secreted
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by CD4+ T cells that are controlled by γ/δ T cells operating through this
down-regulatory cytokine in low-dose tolerance.102 If this mechanism oper-
ates also in humans, the preferential expansion of intraepithelial γ/δ T cells in
the celiac lesion might contribute to the striking increase in Ig-producing im-
munocytes and activated lamina propria CD4+ T cells seen in untreated pa-
tients.103 However, the increase of TCRγ/δ+ IELs in celiac disease could
rather reflect that they are cytotoxic cells involved in the clearance of micro-
organisms or damaged epithelium to preserve the surface barrier.1,98,104

FIGURE 5. Schematic depiction of putative mechanisms suggested for induction of
tolerance via the gut (“oral tolerance”). Hyporesponsiveness to innocuous antigens (Ag)
gaining access to immune cells through M cells (M) in gut-associated lymphoid tissue
(GALT) or through the intestinal surface epithelium, may be explained by T-cell anergy,
clonal deletion by apoptosis, and cytokine-mediated active suppression (immune devia-
tion), either locally or at distant sites after dissemination of absorbed Ag or transport of
Ag in antigen-presenting cells (APC) or epithelial exosomes. In the normal state, when
only low-grade activation takes place, subepithelial APCs migrate quickly to regional
lymph nodes with acquired Ag, thus prohibiting mucosal hyperactivation of T cells local-
ly. Special regulatory T cells (Tr1 and Th3) producing the suppressive cytokines IL-10
and TGF-β appear to be important for the development of a balanced Th2/Th1 profile. A
down-regulatory tone in the gut may also be ascribed to unconventional Ag presentation
by epithelial cells (to the right) and the effect of prostaglandin E2 (PGE2) released from
the epithelium or APCs. Details are discussed in the text.
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Role of Costimulation by Antigen-Presenting Cells

Productive T-cell activation with appropriate proliferation and cytokine se-
cretion requires two signaling events, one through the TCR and another
through a receptor for some costimulatory molecule (FIG. 6). Without the lat-
ter signal, the T cells mount only a partial response and, more importantly,
may be subjected to active tolerance induction83 or anergy with no capacity
for production of their own growth factor IL-2 upon restimulation.105 The re-
quired costimulation for productive immunity is provided by soluble media-
tors such as IL-1 and through cellular interactions, especially ligation of B7

FIGURE 6. Schematic representation of polarized patterns of cytokines produced by
activated T helper (Th) cells. When naive CD4+ Th cells are primed by a professional
antigen-presenting cell (APC) providing adequate costimulatory signals, they differenti-
ate into Th1 or Th2 cells. Such skewing of the immune response depends on the presence
of microenvironmental factors, including cytokines and danger signals from microbial
products interacting with APC receptors, thereby determining the expression level of var-
ious costimulatory signals. For simplicity, only the lipopolysaccharide (LPS) receptor
CD14 and Toll-like receptors (TLRs) are indicated, together with the costimulatory mol-
ecules. B7.1 and B7.2. Th1 cells produce predominantly IFN-γ, IL-2 and TNF-α, while
Th2 cells are mainly capable of IL-4, IL-5, IL-10, and IL-13 secretion. Distinct Th1 and
Th2 profiles are further promoted by inhibitory feedback loops as indicated. Abbrevia-
tions: Ag, antigen; MHC II, major histocompatibility complex class II molecules; TCR,
T-cell receptor; LPs, lipoproteins; CpG, unmethylated nucleotide motif.
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(CD80/CD86) on professional APCs with CD28 on the T cells.106 There is
particularly great interest in the role of DCs in shaping the phenotypes of na-
ive T cells during such initial priming. Also, because DCs have migratory
properties, they largely determine the tissue site in which primary immune re-
sponses will take place.107,108

Immature DC subsets are found both in the circulation and in most periph-
eral tissues from which they, after endocytosis of antigen, generally migrate
via draining lymphatics into regional lymph nodes to perform antigen presen-
tation. The actual expression level of various costimulatory molecules on the
matured and activated DCs during the priming process influences the differ-
entiation of naive T cells in terms of cytokine production—that is, a Th1
(IFN-γ, IL-2, and tumor necrosis factor (TNF)-α) versus a Th2 (IL-4, IL-5,
IL-10, and IL-13) profile (FIG. 6). Interaction of the T-cell CD28 receptor
with B7.1 (CD80) appears to favor the former, and with B7.2 (CD86) the lat-
ter cytokine profile.109 This Th1/Th2 paradigm is important in relation to
atopic allergy, because IgE production as a basis for type I hypersensitivity
(atopy) is highly dependent on IL-4 and IL-13.110 Also, homeostatic cross-
regulation should ideally take place between the Th1 and Th2 responses.111

Considerable information exists about putative aberrant immunoregulatory
functions of nonprofessional APCs such as keratinocytes, because they lack
appropriate costimulatory molecules necessary for productive immunity.112

As alluded to above, this also applies to enterocytes (FIG. 5). Thus, both B7
and intercellular adhesion molecule-1 (CD54) are virtually absent on normal
human enterocytes.113 Low levels of B7 might actually engage the high-
affinity costimulatory molecule CTLA-4 on Th cells,114 which could result
in a down-regulatory response contributing to oral tolerance.115

In the normal state, even the subepithelial professional APCs in human gut
mucosa, which have both macrophage and DC properties, show an extremely
low level of B7 expression15,116 and might therefore ligate CTLA-4 rather
than CD28 on T cells. Also, only B7.2 (CD86) is normally detectable, and
this molecule has been shown in animal experiments to be important for low-
dose oral tolerance.117 Functional characteristics of normal human lamina
propria CD4+ T cells actually do suggest that they are tightly controlled by
suppression. First, they are remarkably unresponsive to signaling via the clas-
sical TCR/CD3 pathway alone, whereas anti-CD2 (particularly together with
engagement of CD28) induces proliferation and cytokine secretion.118,119

Second, they appear to be particularly susceptible to Fas (CD95)-mediated
apoptosis, which might contribute to the limitation of clonal proliferation in
the normal gut.120 Third, they may be kept in check by prostaglandin E2 re-
leased by the gut epithelium or lamina propria macrophages.121

The fact that resident APCs from normal human gut mucosa are quite inert
in terms of immune-productive stimulatory properties122 supports the notion
that they play a central role in induction of oral tolerance. One possibility is
that, in the normal state (i.e., when subjected only to low-grade activation),
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they carry penetrating dietary and innocuous microbial antigens away from
the mucosa, thereby avoiding local hyperactivation of immune cells (FIG. 5).
Indeed, normal human intestinal mucosa shows only very low expression lev-
els of mRNA for IFN-γ, the key cytokine of activated Th1 cells.123 The same
is true for Th2 cytokines such as IL-4 and IL-5. Moreover, animal experi-
ments have demonstrated that intestinal APCs can be triggered by proinflam-
matory factors to become mobilized124 and even constitutively migrate
rapidly with acquired epithelial elements and antigens away from the intesti-
nal mucosa.125,126 Such successful “silent” antigen clearance probably de-
pends on relatively low doses of absorbed antigen and may result in systemic
T-cell-dependent tolerance induction (FIG. 5). Interestingly, in vivo expansion
of the intestinal APC population enhanced the induction of oral tolerance in
mice,127 whereas concurrent APC activation by immunization with cholera
toxin or treatment of the animals with IL-1 resulted in productive immunity
against the fed antigen.128

Animal studies have suggested differential effects of antigen dose and
feeding frequency on the mechanisms of tolerance induction.8 At very high
doses, both Th1 and Th2 cells were shown to be deleted following initial ac-
tivation, an event apparently depending on apoptosis in Peyer’s patches.129

Anergy and clonal deletion would be antigen-specific events, in contrast to
active suppression resulting from deviation of cytokine profiles induced by T-
cell stimulation locally or in regional lymph nodes or the liver130 after distant
transport of antigen in APCs or epithelial exosomes (FIG. 5). Experiments
performed to induce therapeutic tolerance via the gut in various autoimmune
disease models have relied on a bystander effect of stimulated T cells which,
through immune deviation, preferentially have secreted down-regulatory cy-
tokines, particularly TGF-β.131 The gut has been suggested to harbor T cells
with a propensity for secretion of TGF-β (so-called Th3 cells), which appear
to be particularly resistant to apoptosis,129 but this subset has not been clearly
identified in humans. Another regulatory T-cell subset (Tr1) with a remark-
able propensity for IL-10 production has been identified both in the murine
and human gut.132,133

Altogether, a complex scenario may be proposed for oral tolerance, de-
pending on apoptosis when intestinal antigen exposure is excessive and on
anergy due to lack of costimulatory APC molecules, antigen clearance from
the mucosa, and induction of immune deviation (skewing of T-cell cytokine
profile) at lower antigen doses (FIG. 5). This scenario is further complicated
by the fact that several cytokines contributing to the local profile are produced
not only by T cells, but also by APCs and epithelial cells, for instance the
down-regulatory cytokines TGF-β and IL-10. Furthermore, it remains un-
clear whether the most important immunoregulatory events for oral tolerance
against dietary antigens takes place in the Peyer’s patches, in the lamina pro-
pria, or in systemic lymphoid organs.134–136
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Mucosal Homeostasis versus Allergy

It may seem paradoxical that mucosal disorders such as inflammatory bow-
el disease (IBD) and celiac disease appear to depend, at least initially, on pu-
tative Th1-cell-driven pathogenic mechanisms,103,137 while atopic (IgE-
mediated) allergy originates from Th2-cell responses110,138 which generate
the essential cytokines IL-4 and IL-13 (early phase) as well as IL-3, IL-5, and
GM-CSF (late phase). According to the hygiene hypothesis, the increasing in-
cidence of allergy in Westernized societies over the last decades139,140 may to
some extent be explained by a reduced microbial load early in infancy,140–142

resulting in too little Th1-cell activity and therefore an insufficient level of
IFN-γ to cross-regulate optimally Th2-cell responses (FIG. 7). In this context
an appropriate composition of the commensal bacterial flora144 and exposure

FIGURE 7. Shift of the balance between microbial exposure and pollution as a pos-
sible cause of the increase in IgE-mediated allergy over the last decades. Infections due
to foodborne and orofecal microbes are dramatically decreased in the Westernized part
of the world, and so are other Th1-driving stimuli such as lipopolysaccharide (LPS) from
gram-negative bacteria, saprophytic mycobacteria from soil and water, and lactic acid-
producing bacteria. Reduced secretion of IL-12 and IL-18 by antigen-presenting cells
(APC) is one explanation for downregulated Th1-cell responses, which are the basis for
delayed type hypersensitivity (DTH)-dependent immune defense. Consequently, there is
also less negative crossregulation of Th2 cells by IFN-γ, allowing enhanced IgE respons-
es to protein antigens (allergens). Pollution may also directly (or indirectly via mast-cell
activation) stimulate IgE production. Modified from Brandtzaeg.138
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to foodborne and orofecal microbes145,146 most likely exert an important ho-
meostatic impact, both by enhancing the SIgA-mediated barrier function (see
above) and by promoting oral tolerance through a shift from a predominant
Th2-cell activity in the newborn period to a more balanced cytokine profile
later on.147 Thus, the intestinal microflora of young children in Sweden was
found to contain a relatively large number of Clostridium sp., whereas high
levels of Lactobacillus sp. and Eubacterium sp. were detected in an age-
matched population from Estonia.148 Perhaps this difference could explain
the lower incidence of allergy in the Baltic countries compared with Scandi-
navia. Interestingly, the intestinal microflora of children in Estonia were
deemed to be somewhat similar to that of Swedish children in the 1960s. Al-
so, the intestinal microflora of Estonian children with allergy appeared to dif-
fer from that of their healthy counterparts, particularly by containing less
lactobacilli.149 A recent Finnish study likewise reported that atopic infants
had more clostridia and tended to have fewer bifidobacteria in their stools
than nonatopic controls.150

Such observations make a good case for studying the potential clinical ben-
efits of prebiobics and probiotic bacterial strains from the indigenous gut
flora.143,151,152 Similarly, there is some hope that immunization with myco-
bacterial antigens might skew the cytokine profile towards Th1 and thereby,
through cross-regulation, dampen Th2-dependent allergic (atopic) symp-
toms.153,154 Newborns are in fact able to mount a Th1-type immune response
when appropriately stimulated.155 Also notably, the bacterial endotoxin or
LPS receptor CD14 together with the Toll-like receptor (TLR4) on APCs, as
well as other TLRs that recognize microbial products (e.g., lipoproteins and
peptidoglycans) as danger signals or PAMPs (pathogen-associated molecular
patterns) are in this respect an important link between innate and specific im-
munity (FIGS. 6 and 7). This link operates via the NF-κB activation pathway
to release proinflammatory cytokines,156,157 including the Th1-inducing
IL-12 and IL-18.158,159 Even certain CpG motifs of bacterial DNA have been
shown to promote Th1-cell activity through interaction with TLR9.160–162

Subepithelial intestinal APCs most likely express TLRs, although this has not
yet been studied properly in the human gut.163 However, low levels of CD14
are normally present on these cells, and its expression is enhanced together
with that of B7.1 and B7.2 by proinflammatory factors.15,116

Altogether, it appears that the human intestinal immune system preferen-
tially responds with a dominating Th1 profile,123 even against various food
antigens in the seemingly normal state.164 This appears to be true for T cells
also in the duodenal mucosa of children with cow’s milk hypersensitivity165

and might to some extent reflect a high expression level of the Th1-promoting
cytokine IL-12 observed for putative APCs situated below the FAE of Peyer’s
patches in children.166 The strong bias towards Th1-cell responses in the hu-
man gut could thus contribute to the fact that the majority of food-allergic
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children outgrow their problems.2 This is in contrast to respiratory atopic al-
lergy, which tends to persist and increase in severity.167,168 Most likely, dan-
ger signals from an established intestinal bacterial flora, as well as the
environmental microbial exposure, exert an important drive towards an ade-
quate Th1 skewing in the gut, thus counterbalancing excessive Th2 responses
(FIGS. 6 and 7). Nevertheless, allergen-specific mucosal Th2 cells have been
detected in patients with presumably cow’s milk–induced gastroenteritis.169

Although the immune system in the airways also responds to antigen stim-
ulation in the presence of danger signals (infection or inflammation) with a
Th1 profile,107 an increasingly prominent Th2 profile generally develops as
the basis for IgE-mediated (type I) respiratory allergy167,170 in individuals
with hereditary atopic predisposition.171,172 This skewing towards Th2-cell
responses may be influenced by the so-called “lymphoid” DC type, recently
named plasmacytoid DCs (P-DCs), which can be identified by their high lev-
el of IL-3-receptor (CD123) in allergic nasal mucosa.173 In vitro, P-DCs have
been shown to drive naive T cells towards a Th2 response with IL-4 and IL-5
production.174 Interestingly, we have been unable to detect P-DCs in the in-
testinal lamina propria, even in IBD and celiac disease (Jahnsen et al., unpub-
lished observations). Therefore, the apparent inability of this DC subset to
home to intestinal effector sites might contribute to the Th1 dominance of im-
mune responses in the human gut as a result of little cross-regulation from lo-
cal Th2 responses. The paucity of human intestinal Th2 responsiveness166 is
emphasized by the fact that there is usually no detectable IgE production at
this mucosal effector site, even in adult food-allergic persons with overt ato-
py.175 Hence, there may be several mechanisms other than a local mucosal
Th2 response to explain gastrointestinal allergy against dietary antigens,2,176

including recruitment of mast cells armed with IgE from mesenteric lymph
nodes, type III (immune complex)-mediated reactions and type IV (delayed-
type) hypersensitivity.2,138

The feeding and treatment regimens (e.g. antibiotics) to which the newborn
is subjected, and even the nutritional state, have a significant impact on its es-
tablishing indigenous microbiota as well as on gut integrity and hence may
disturb the balance of its developing mucosal immune system.144,177,178 The
role of commensal bacteria for mucosal tolerance induction in humans was
highlighted in a recent clinical trial with postnatal colonization (for 6 months)
of a probiotic lactobacillus strain60; after 2 years, a 50% reduction of atopic
eczema was observed in these children compared with placebo controls. In-
testinal colonization of lactobacilli and bifidobacteria is promoted by breast
milk because of its large amounts of oligosaccharides, which have prebiotic
properties178; these microorganisms may directly enhance the Th1 profile in
the gut (FIG. 7) by inducing IL-12, IL-18, and IFN-γ.179,180 Also notably, E.
coli is a strong inducer of IL-10 secretion, apparently derived from
APCs.181,182 This has directly been shown to be an important suppressive cy-
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tokine in the gut.102 Thus, the indigenous microbiota may have an impact on
mucosal homeostasis beyond that of enchancing the SIgA system or promot-
ing a Th1-cytokine profile that counterbalances Th2-cell responsiveness.184

Effect of Breastfeeding on Oral Tolerance

Through avoidance of too-early local immune activation, for instance lim-
iting the intestinal upregulation of the costimulatory B7 molecules,8,134 the
shielding effect exerted by SIgA from breast milk on the suckling’s GALT
may contribute to the establishment of oral tolerance not only against the in-
digenous microflora, but also against dietary antigens such as gluten. Anti-
bodies to gluten peptides are present in breast milk,29 and breastfeeding has
in fact been shown to protect significantly against the development of celiac
disease in children unrelated to the time of solid food introduction.65 Early
exposure to cow’s milk has been suggested to be associated with predisposi-
tion to type 1 (insulin-dependent) diabetes, and investigations have particu-
larly focused on immune stimulation by bovine serum albumin,185 β-
lactoglobulin,186 and insulin.187 In a recent study, short-term breastfeeding
and early introduction of cow’s milk were found to be associated with pro-
gressive signs of type 1 diabetes-related autoimmunity.188

On the basis of such observations, it may be tentatively concluded that
mixed feeding, rather than abrupt weaning, appears to promote tolerance to
food proteins and thereby also avoidance of potentially harmful cross-
reactive autoantibodies. This notion is further supported by reports suggest-
ing that cow’s milk allergy is more likely to develop in infants whose mothers
have relatively low levels of milk IgA antibodies to bovine proteins.28,189 It
is also noteworthy in this context that allergic mothers appear to have de-
creased levels of ovalbumin-specific IgA190 and elevated levels of Th2-
promoting IL-4191 in their breast milk.

On the other hand, the presence of TGF-β and IL-10 in breast milk might
contribute to its tolerogenic properties, because these cytokines exert pro-
nounced immunosuppressive effects in the gut.183,192 The balance between
IL-10 and the Th2-promoting IL-4 might be of particular significance. More-
over, TGF-β enhances the epithelial barrier function.193 Interestingly, TGF-β
has been reported to be present at a higher level in maternal colostrum provided
for infants that did not develop atopic eczema during exclusive breastfeeding
compared to those with early-onset symptoms.194

Many recent epidemiological studies do support the view that breastfeed-
ing protects against atopic allergy and asthma,62–64 although this is still a
somewhat controversial issue.177 Food antigens appear in breast milk, but di-
etary restriction during pregnancy and breastfeeding has shown no conclusive
effect on the development of atopic diseases in the child.177,178 It remains an
open question whether early exposure to small amounts of food antigens may
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actually have a positive effect on tolerance induction, especially when occur-
ring in its natural context in the gut lumen of a suckling.195

CONCLUSIONS

Several more or less well-defined variables influence the development of
productive mucosal immunity and oral tolerance, therefore constituting a
complex and rather enigmatic mechanistic basis for adaptive immune defense
and adverse immunological reactions to foods. An inadequate epithelial bar-
rier against luminal antigens is an important primary or secondary event in
the pathogenesis of several mucosal diseases—being influenced by the indi-
vidual’s age (e.g., preterm versus term infant), activation of the epithelium
and subepithelial elements such as APCs and mast cells (e.g., by infection,
cytokines, or neuropeptides), and the shielding effect of SIgA provided by
breast milk or produced by adaptive B-cell responses in the infant’s gut. The
consequences will depend on how fast mucosal homeostasis can be attained
or re-established after abrogation.

SIgA is the best defined effector component of the mucosal immune sys-
tem, and it operates by immune exclusion against infectious agents and other
harmful substances. Breastfeeding provides the infant with this important
first-line specific defense. Breast milk also contains an array of important im-
munoregulatory factors and promotes colonization of lactic acid-producing
bacteria. These members of the indigenous microbiota are powerful in com-
bating pathogenic intruders that may break oral tolerance,151,152 and they
also appear to exert a beneficial effect on the cytokine balance of the host and
thereby on the developing immunological responder phenotype. Animal ex-
periments have indeed documented that the commensal bacterial flora are
crucial both for induction of oral tolerance and for its re-establishment after
abrogation.3 This effect not only might be mediated through immune modu-
lation, but could also be partly explained by enzymatic activity of the indig-
enous flora that degrades food proteins to tolerated peptides.196
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